
Inventory Framework Documentation
v0.2

Introduction
The purpose of this package is to provide a versatile and extensible solution for creating inventories in Unity. Its design allows
developers to quickly set up functional inventories while offering the flexibility to adapt to custom use cases. The framework
supports a variety of inventory types, making it suitable for a wide range of games.

The predefined inventory types are:

Built on UI Toolkit, it offers advanced styling and layout capabilities while avoiding the overhead of GameObjects and Prefabs.
Learn more in the UI Toolkit documentation.
It also comes bundled with an abstract yet powerful item system that minimizes setup while supporting diverse use cases.

This framework is currently targeted at programmers. It lacks designer-friendly features such as custom editors or Scriptable
Objects, so some coding is required to implement custom functionality. Support for Scriptable Objects may come in the next
update.

Getting started
To get started, check out the 2 demos included in the Lite version - "Minimal" and "Basic".

The Minimal demo has the least amount of code needed to setup a working inventory. It is a great starting point to familiarize
yourself with the fundamentals of the framework. It consists of one inventory, some items and the simplest behavior of moving
items around.

The Basic demo is a Minecraft-inspired inventory featuring the following:

List/Grid Inventory: A straightforward collection of items arranged as a list or a grid.
Equipment Inventory: Ideal for RPGs or games with wearable gear.
Advanced Grid Inventory: Supports items of varying sizes (Not available in Lite).
Puzzle Inventory: A grid system for rotatable shapes (Not available in Lite).

A main inventory window consisting of equipment, inventory and a consumables hot-bar
A vendor window where you can buy pre-defined items and sell items from your inventory.
A treasure chest window, which has some items that you can pick but cannot place anything back. You can also pick all
at once.
A crafting bench window, which has slots for materials and an outcome slot. Placing materials in the correct order will
populate the outcome slot. Picking the item from outcome slot will "craft" the item.
A stash window, which is an inventory you can store items in.
A way to drop items on the "ground".
A way to destroy items, by dragging them over a designated area.

https://docs.unity3d.com/Manual/UIElements.html

Installation
You can install the package from Unity Package Manager.
There are no external dependencies.

Core Concepts
The framework is built around several key concepts that define its structure and behavior. Understanding these will help you
make the most of its features.

All this is integrated in a minimalistic 3d scene.

Item

An Item is a data type that represents an individual object in an inventory. It is highly flexible and comprises two main
components:

This architecture is heavily inspired from RPGs like Diablo and Path of Exile but the separation ensures adaptability to fit various
gameplay scenarios.

Slot

A Slot is a container that can either hold an Item or remain empty. Slots can enforce restrictions, such as allowing only specific
types of items, by providing a function (Accepts) that operates on Item type.

The base Slot type is extended into specialized slot types:

Inventory

An Inventory manages a collection of Slots. Each inventory type comes with its own behavior and can enforce restrictions on
accepted items. The base inventory type is Bag , a short and descriptive name.

The base Bag type is extended into specialized types:

Event Bus and Events
The framework uses an Event Bus to decouple its components. Events are data containers describing actions, such as picking
up an item. For example, a PickItem event includes the item itself, the source inventory and slot.

An event does not perform any actions itself, that falls under the responsibility of the Store.

Store

Inspired by web technologies like Redux, the Store serves as the central hub for managing system state. It subscribes to events
on event channels and performs necessary state updates. All changes to the system state flow through the Store, ensuring
consistency and predictability.

Base: Contains fixed properties like ID, name, and icon path.
Data: Holds dynamic properties such as quantity or rarity.

// Item.cs
public record Item(int Id, ItemBase ItemBase, ItemData ItemData)
public record ItemBase(string Id, string Name, string IconPath, bool Stackable, Size Size);
public record ItemData(int Quant = 1);

// Inventory.cs
public delegate bool FilterFn(Item item);
public record Slot(Item Item) {

public FilterFn Accepts = (_) => true;
};

ListSlot : Index-based storage.
SetSlot : Named slots for equipment/wearable items.
GridSlot (not available in Lite): Grid-based position storage.

// Types.cs
public abstract record Bag(string Id) {

public static NoBag NoBag = new();
public FilterFn Accepts = Filters.Everything;

}

ListBag : Contains a list of ListSlots
SetBag : Contains a list of SetSlots
GridBag (not available in Lite): Contains a 2D array of GridSlots as well as a list of GridItems

// Events.cs
public record PickItemEvent(Bag Bag, Item Item, Slot Slot);

https://diablo2.io/base/
https://www.poewiki.net/wiki/Body_armour
https://dzone.com/articles/design-patterns-event-bus
https://redux.js.org/faq/general#when-should-i-use-redux

Item Database

This is your repository of item bases and all the types that fully describe and categorize them.
For example an Apple is defined as a stackable, consumable basic item, while a Dagger is a 1-handed weapon, with Attack
Damage and Attack Speed

Behaviors
The UI is decoupled from any interactivity logic. All logic is abstracted away in behaviors, like showing a tooltip on hovering an
item, dragging an item to pick it up or showing a "ghost" version of the dragged item.

Technical Details
The framework takes a functional programming approach, emphasizing simplicity and separation of concerns. It uses the a
common "good" practice of Composition over Inheritance and not so common convention of Rules over Conditions (pattern
matching).

C# Records are used to model data types. They offer concise syntax, value-like behavior and are immutable by default. The
immutability aspect is particularly useful for View Components, as it simplifies determining whether a re-render is necessary.

// Store.cs
public Store() {

Bus.Subscribe<PickItemEvent>(e => OnPickItem(e as PickItemEvent));
// ...

}

void OnPickItem(PickItemEvent e) {
LogEvent(e);
// ...

}

// Types.cs
public record ItemBase(BaseId BaseId, string Name, string IconPath, bool Stackable, ItemClass
Class);

public record WeaponItemBase(BaseId BaseId, string Name, string IconPath, ItemClass Class, int
Attack, float AttackSpeed)
//...
public static ItemBase Apple = new("Apple", "Apple", "Shared/Images/items/apple", true,
ItemClass.Consumable);

public static WeaponItemBase ShortSword = new("ShortSword", "Short Sword",
"Shared/Images/items/sword-blue", ItemClass.Weapon1H, 80, 1.5f);

// Behaviors.cs
public static VisualElement WithDragToPickBehavior(this VisualElement element,
Observable<Item> draggedItem, EventBus bus) {/*...*/}

public static VisualElement WithItemTooltipBehavior<T>(this VisualElement root) where T :
Component<Item> {/*...*/}

// RootLayer.cs
this.Add("root-layer")

.WithDragToPickBehavior(Store.Instance.DraggedItem, Store.Bus)

.WithGhostItemBehavior<BasicItemView>(Store.Instance.DraggedItem)

.WithItemTooltipBehavior<Tooltip>();

// InventoryExtensions.cs
public static (bool, Item) PlaceItem(this Bag bag, Item item, Slot slot){

return (bag, slot) switch {
(GridBag b, GridSlot s) => PlaceItem(b, item, s),
(SetBag b, SetSlot s) => PlaceItem(b, item, s),
(ListBag b, ListSlot s) => PlaceItem(b, item, s),
_ => (false, Item.NoItem)

};
}

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record#immutability

A type's behavior is implemented via extension methods to keep the data structures clean and focused. This prevents behavior
inheritance, which is a big pain-point in classic OOP design.

To ensure proper input validation when creating new instances, each data type comes with one or more factory functions. For
example, an Item can be created by providing both an ItemBase and an ItemData or just an ItemBase . In either case, the
item Id will be automatically generated.

To represent the absence of an object the null object pattern is employed in favor of the classic null reference. This means that
most types have an associated void type: Item => NoItem which acts like the identity element from algebra. One of the main
advantages of this approach is that an operation can be performed on a an item or a collection of items without the need of a null
check beforehand. An operation like this will have no effect on the item, if it is a NoItem .

UI Toolkit Integration
The framework leverages UI Toolkit for rendering inventory views. It provides a declarative way to define elements, their data,
and their styles using C# and USS, while completely avoiding UXML. The reason for bypassing UXML is that data binding,
referencing elements and working with the UXML asset, all come with levels of verbosity and complexity that drastically slow
down productivity. This means, however, that the included visual components (inventories, windows, slots) cannot be viewed in
Unity's UI Builder. You can still use the UI Builder to design own custom components if you prefer so.
Since UI Toolkit is heavily based on web technologies, the framework proposes web-inspired nomenclature, such as:

How it works

// Item.cs
public record Item(int Id, ItemBase ItemBase, ItemData ItemData)

// InventoryExtensions.cs
public static Slot Clear(this Slot slot) => slot with { Item = Item.NoItem };

// Item.cs
public static class ItemFactory {

public static Item Create(ItemBase itemBase, ItemData itemData) => new(Id(), itemBase,
itemData);

public static Item Create(ItemBase itemBase) => new(Id(), itemBase, NoItemData);
//...

}

DOM: Utility functions for managing elements.
DIV: A shorthand alias for VisualElement .

https://en.wikipedia.org/wiki/Null_object_pattern
https://en.wikipedia.org/wiki/Identity_element#:~:text=In%20mathematics%2C%20an%20identity%20element,such%20as%20groups%20and%20rings.
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div

From a birds eye view, the system consists of a data store , an event bus and UI
When the user interacts with the UI, let's say picks an item from a slot, an event is put on the event bus.

The Store , having subscribed to the event, sends its data to a handler function which will update the bag .

Then, any view that is observing the bag will update itself.

How to Use the Framework

Troubleshooting

// Behaviors.cs
CustomEvent evt = new PickItemEvent(t.Bag, t.Data.Item, t.Data, e.modifiers)

bus.Publish(evt);

// Store.cs
Bus.Subscribe<PickItemEvent>(e => OnPickItem(e as PickItemEvent));
void OnPickItem(PickItemEvent e) {

//...
bag.Notify();

}

// ListBagView.cs
this.Observe(bag.Data, (slots) => {/*...*/});

1. Set up an inventory: Start by modifying or cloning one of the provided demos. Cloning ensures you don’t lose your changes
when updating the package.

2. Add new items:
Define a new item base in the Bases static class (Basic/Inventory/Types.cs)
Use the ItemFactory.Create function to create the item.
Add the item to an inventory using AddItem or SetItems in the Store's Reset method.

3. Reference examples: Use the provided samples for guidance on extending functionality.

Use the UI Toolkit Debugger (Window > UI Toolkit > Debugger) to inspect the visual elements tree and its styles and
classes.

Since UI Toolkit uses a form of CSS, it also inherits all the downsides of the cascading aspect - always check for unintended style
propagation affecting your UI.

Use the included Debug editor windows to view the raw state of the system. These tools help identify whether issues originate
from the data layer or the view layer.

Need Help?

Join our Discord server to ask questions and get support from the community.

Roadmap
Persistence: Save/load functionality using JSON and/or CSV.
Designer Tools: Support for Scriptable Objects and custom editors.
An advanced version (paid) is coming "soon". It will include

https://www.youtube.com/redirect?event=channel_header&redir_token=QUFFLUhqbDhfRHhLQ0pEUk9tcGd0VkR2MUtad1JmQ3pjZ3xBQ3Jtc0tuYm1DQ0xHZDVpQ3pGbzZUdkNSU0UycThGeU1zU2hPUnlOSkdlN3NwcnFrazJaRUo1VTkyWGI4NzZnd2dJdnZES0lpYm1qMmMwWFg3c2JvSnhjLVVnTXVEXy1kdHJxVjFxdkd2VE1HYy1XckYwbXZJQQ&q=https%3A%2F%2Fdiscord.gg%2FZXgJZM29fs

Diablo / Path of Exile

Grid inventory with varying item sizes.
Puzzle inventory with varying item shapes that can also be rotated.
Demos for grid-based inventories inspired by some popular games like Diablo , Backpack Battles , DayZ

Backpack Battles

DayZ

